
C++ Programming:

From Problem Analysis

to Program Design, Fourth Edition

Chapter 9: Arrays and Strings

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 2

Objectives

In this chapter, you will:

• Learn about arrays

• Explore how to declare and manipulate data

into arrays

• Understand the meaning of “array index out

of bounds”

• Become familiar with the restrictions on array

processing

• Discover how to pass an array as a

parameter to a function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 3

Objectives (continued)

• Learn about C-strings

• Examine the use of string functions to
process C-strings

• Discover how to input data into—and output
data from—a C-string

• Learn about parallel arrays

• Discover how to manipulate data in a two-
dimensional array

• Learn about multidimensional arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 4

Data Types

• A data type is called simple if variables of that

type can store only one value at a time

• A structured data type is one in which each

data item is a collection of other data items

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 5

Arrays

• Array: a collection of a fixed number of

components wherein all of the components

have the same data type

• In a one-dimensional array, the components

are arranged in a list form

• Syntax for declaring a one-dimensional array:

intExp evaluates to a positive integer

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 6

Arrays (continued)

• Example:

int num[5];

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 7

Accessing Array Components

• General syntax:

where indexExp, called an index, is any expression

whose value is a nonnegative integer

• Index value specifies the position of the

component in the array

• [] is the array subscripting operator

• The array index always starts at 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 8

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 9

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 10

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 11

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 12

Processing One-Dimensional Arrays

• Some basic operations performed on a one-

dimensional array are:

− Initializing

− Inputting data

− Outputting data stored in an array

− Finding the largest and/or smallest element

• Each operation requires ability to step through

the elements of the array

• Easily accomplished by a loop

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 13

Processing One-Dimensional Arrays
(continued)

• Consider the declaration

int list[100]; //array of size 100

int i;

• Using for loops to access array elements:

for (i = 0; i < 100; i++) //Line 1

//process list[i] //Line 2

• Example:

for (i = 0; i < 100; i++) //Line 1

cin >> list[i]; //Line 2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 15

Array Index Out of Bounds

• If we have the statements:
double num[10];

int i;

• The component num[i] is valid if i = 0, 1, 2,

3, 4, 5, 6, 7, 8, or 9

• The index of an array is in bounds if the index

>=0 and the index <= ARRAY_SIZE-1

− Otherwise, we say the index is out of bounds

• In C++, there is no guard against indices that

are out of bounds

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 16

Array Initialization During

Declaration

• Arrays can be initialized during declaration

− In this case, it is not necessary to specify the size

of the array

• Size determined by the number of initial values in the

braces

• Example:
double sales[] = {12.25, 32.50, 16.90, 23, 45.68};

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 17

Partial Initialization of Arrays

During Declaration

• The statement:

int list[10] = {0};

declares list to be an array of 10 components

and initializes all of them to zero

• The statement:

int list[10] = {8, 5, 12};

declares list to be an array of 10 components,

initializes list[0] to 8, list[1] to 5,

list[2] to 12 and all other components are

initialized to 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 18

Partial Initialization of Arrays

During Declaration (continued)

• The statement:

int list[] = {5, 6, 3};

declares list to be an array of 3 components

and initializes list[0] to 5, list[1] to 6, and

list[2] to 3

• The statement:

int list[25]= {4, 7};

declares an array of 25 components; initializes
list[0] to 4 and list[1] to 7; all other

components are initialized to 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 19

Some Restrictions on Array

Processing

• Consider the following statements:

• C++ does not allow aggregate operations on

an array:

• Solution:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 20

Some Restrictions on Array

Processing (continued)

• The following is illegal too:

• Solution:

• The following statements are legal, but do not

give the desired results:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 21

Arrays as Parameters to Functions

• Arrays are passed by reference only

• The symbol & is not used when declaring an

array as a formal parameter

• The size of the array is usually omitted

− If provided, it is ignored by the compiler

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 22

Constant Arrays as Formal

Parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 23

Base Address of an Array and

Array in Computer Memory

• The base address of an array is the address, or

memory location of the first array component

• If list is a one-dimensional array, its base

address is the address of list[0]

• When we pass an array as a parameter, the

base address of the actual array is passed to

the formal parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 25

Functions Cannot Return a Value

of the Type Array

• C++ does not allow functions to return a

value of the type array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 26

Integral Data Type and Array

Indices

• C++ allows any integral type to be used as an

array index

• Example:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 27

Other Ways to Declare Arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 28

C-Strings (Character Arrays)

• Character array: an array whose components
are of type char

• C-strings are null-terminated ('\0') character

arrays

• Example:

− 'A' is the character A

− "A" is the C-string A

• "A" represents two characters, 'A' and '\0‘

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 29

C-Strings (Character Arrays)

(continued)

• Consider the statement

char name[16];

• Since C-strings are null terminated and name

has 16 components, the largest string that it
can store has 15 characters

• If you store a string of length, say 10 in name

− The first 11 components of name are used

and the last five are left unused

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 30

C-Strings (Character Arrays)

(continued)

• The statement

char name[16] = "John";

declares an array name of length 16 and

stores the C-string "John" in it

• The statement

char name[] = "John";

declares an array name of length 5 and stores

the C-string "John" in it

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 31

C-Strings (Character Arrays)

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 32

String Comparison

• C-strings are compared character by

character using the collating sequence of the

system

• If we are using the ASCII character set

− "Air" < "Boat"

− "Air" < "An"

− "Bill" < "Billy"

− "Hello" < "hello"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 34

Reading and Writing Strings

• Most rules that apply to arrays apply to C-

strings as well

• Aggregate operations, such as assignment and

comparison, are not allowed on arrays

• Even the input/output of arrays is done

component-wise

• The one place where C++ allows aggregate

operations on arrays is the input and output of
C-strings (that is, character arrays)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 35

String Input

• cin >> name; stores the next input C-
string into name

• To read strings with blanks, use get:

cin.get(str, m+1);

− Stores the next m characters into str but the
newline character is not stored in str

− If the input string has fewer than m
characters, the reading stops at the newline
character

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 36

String Output

• cout << name; outputs the content of name

on the screen

− << continues to write the contents of name

until it finds the null character

− If name does not contain the null character,

then we will see strange output

• << continues to output data from memory

adjacent to name until '\0' is found

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 37

Specifying Input/Output Files at

Execution Time

• You can let the user specify the name of the

input and/or output file at execution time:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 38

string Type and Input/Output

Files

• Argument to the function open must be a

null-terminated string (a C-string)

• If we use a variable of type string to read

the name of an I/O file, the value must first be
converted to a C-string before calling open

• Syntax:

strVar.c_str()

where strVar is a variable of type string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 39

Parallel Arrays

• Two (or more) arrays are called parallel if

their corresponding components hold related

information

• Example:

int studentId[50];

char courseGrade[50];

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 40

Two-Dimensional Arrays

• Two-dimensional array: collection of a fixed

number of components (of the same type)

arranged in two dimensions

− Sometimes called matrices or tables

• Declaration syntax:

where intexp1 and intexp2 are expressions

yielding positive integer values, and specify the

number of rows and the number of columns,

respectively, in the array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 41

Two-Dimensional Arrays

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 42

Accessing Array Components

• Syntax:

where indexexp1 and indexexp2 are

expressions yielding nonnegative integer values,

and specify the row and column position

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 43

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 44

Two-Dimensional Array

Initialization During Declaration

• Two-dimensional arrays can be initialized

when they are declared:

− Elements of each row are enclosed within

braces and separated by commas

− All rows are enclosed within braces

− For number arrays, if all components of a row

aren’t specified, unspecified ones are set to 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 45

Two-Dimensional Arrays and
Enumeration Types

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 46

Processing Two-Dimensional

Arrays

• Ways to process a two-dimensional array:

− Process the entire array

− Process a particular row of the array, called

row processing

− Process a particular column of the array,

called column processing

• Each row and each column of a two-

dimensional array is a one-dimensional array

− To process, use algorithms similar to

processing one-dimensional arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 47

Processing Two-Dimensional

Arrays (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 48

Initialization

• To initialize row number 4 (i.e., fifth row) to 0

• To initialize the entire matrix to 0:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 49

Print

• To output the components of matrix:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 50

Input

• To input data into each component of
matrix:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 51

Sum by Row

• To find the sum of row number 4 of matrix:

• To find the sum of each individual row:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 52

Sum by Column

• To find the sum of each individual column:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 53

Largest Element in Each Row and

Each Column

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 54

Reversing Diagonal

• Before:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 55

Reversing Diagonal (continued)

• To reverse both the diagonals:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 56

Reversing Diagonal (continued)

• After:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 57

Passing Two-Dimensional Arrays as

Parameters to Functions

• Two-dimensional arrays can be passed as

parameters to a function

− Pass by reference

• Base address (address of first component of the

actual parameter) is passed to formal parameter

• Two-dimensional arrays are stored in row

order

• When declaring a two-dimensional array as a

formal parameter, can omit size of first

dimension, but not the second

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 58

Arrays of Strings

• Strings in C++ can be manipulated using

either the data type string or character arrays
(C-strings)

• On some compilers, the data type string

may not be available in Standard C++ (i.e.,

non-ANSI/ISO Standard C++)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 59

Arrays of Strings and the string

Type

• To declare an array of 100 components of
type string:

string list[100];

• Basic operations, such as assignment,

comparison, and input/output, can be
performed on values of the string type

• The data in list can be processed just like

any one-dimensional array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 60

Arrays of Strings and C-Strings

(Character Arrays)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 61

Another Way to Declare a Two-

Dimensional Array

• Consider the following:

• To declare an array of 20 rows and 10

columns:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 62

Multidimensional Arrays

• Multidimensional array: collection of a fixed

number of elements (called components)

arranged in n dimensions (n >= 1)

− Also called an n-dimensional array

• Declaration syntax:

• To access a component:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 63

Multidimensional Arrays (continued)

• When declaring a multidimensional array as a

formal parameter in a function

− Can omit size of first dimension but not other

dimensions

• As parameters, multidimensional arrays are

passed by reference only

• A function cannot return a value of the type

array

• There is no check if the array indices are within

bounds

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 64

Programming Example: Code

Detection

• When a message is transmitted in secret code

over a transmission channel, it is usually

transmitted as a sequence of bits (0s and 1s)

• Due to noise in the transmission channel, the

transmitted message may become corrupted

− Message received at destination is not the

same as the message transmitted

− Some of the bits may have been changed

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 65

Programming Example: Code

Detection (continued)

• Several techniques to check the validity of the

transmitted message at the destination

• One technique is to transmit the same

message twice

− At the destination, both copies of the message

are compared bit by bit

− If the corresponding bits are the same, the

message received is error-free

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 66

Programming Example: Code

Detection (continued)

• We write a program to check if the message

received at the destination is error-free

• For simplicity, assume that:

− The secret code representing the message is

a sequence of digits (0 to 9)

− The maximum length of the message is 250

digits

• The first number in the message is the length

of the message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 67

Programming Example: Code

Detection (continued)

• If the secret code is

7 9 2 7 8 3 5 6

then the message is seven digits long

• The above message is transmitted (twice) as

7 9 2 7 8 3 5 6 7 9 2 7 8 3 5 6

• Input: a file containing the secret code and its

copy

• Output: the secret code, its copy, and a

message if the received code is error-free

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 68

Programming Example: Code

Detection (continued)

• The results are output in the following form:
Code Digit Code Digit Copy

9 9

2 2

7 7

8 8

3 3

5 5

6 6

• Message transmitted OK

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 69

Programming Example: Problem

Analysis

• Because we have to compare digits of the

secret code and its copy:

− First, read the secret code and store it in an

array

− Next, read first digit of the copy and compare it

with the first digit of the code, and so on

− If any corresponding digits are not the same,

print a message next to the digits

• The first number in the secret code, and in

the copy, indicates the length of the code

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 70

Programming Example: Algorithm

Design

• Open the input and output files

• If the input file does not exist, exit the

program

• Read the length of the secret code

• If the length of the secret code is greater than

250, terminate the program because the

maximum length of the code in this program

is 250

• Read and store the secret code into an array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 71

Programming Example: Algorithm

Design (continued)

• Read the length of the copy

• If the length of the secret code and its copy

are the same, compare the codes; otherwise,

print an error message

• Note: To simplify function main, write a

function, readCode, to read the secret code

and another function, compareCode, to

compare the codes

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 72

Programming Example:
readCode

• First, read length of secret code

• If length of secret code is greater than 250

− Set lenCodeOk (a reference parameter) to

false and the function terminates

• Value of lenCodeOk is passed to calling

function to indicate if secret code was read

successfully

• If length of code is less than 250, readCode

reads and stores secret code into an array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 73

Programming Example:

readCode (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 74

Programming Example:

compareCode

• Set a bool variable codeOk to true

• If length of code and copy are not equal

− Output error message and terminate function

• For each digit in input file

− Read the next digit of secret code copy

− Output digits from code and copy

− If corresponding digits are not equal, output
error message and set codeOk to false

• If codeOk, output message indicating code

transmitted OK, else output an error message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 75

Programming Example:

compareCode (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 76

Programming Example:

compareCode (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 77

Programming Example: Main

Algorithm

• Declare variables

• Open the files

• Call readCode to read the secret code

• If (length of the secret code <= 250)

− Call compareCode to compare the codes

else

− Output an appropriate error message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 78

Summary

• Array: structured data type with a fixed

number of components of the same type

− Components are accessed using their relative

positions in the array

• Elements of a one-dimensional array are

arranged in the form of a list

• An array index can be any expression that

evaluates to a nonnegative integer

− Must always be less than the size of the array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 79

Summary (continued)

• The base address of an array is the address

of the first array component

• When passing an array as an actual

parameter, you use only its name

− Passed by reference only

• A function cannot return a value of the type

array

• In C++, C-strings are null terminated and are

stored in character arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 80

Summary (continued)

• Commonly used C-string manipulation

functions include:

− strcpy, strcmp, and strlen

• Parallel arrays are used to hold related

information

• In a two-dimensional array, the elements are

arranged in a table form

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 81

Summary

• To access an element of a two-dimensional

array, you need a pair of indices:

− One for the row position

− One for the column position

• In row processing, a two-dimensional array is

processed one row at a time

• In column processing, a two-dimensional

array is processed one column at a time

