C++ Programming:
From Problem Analysis
to Program Design, Fourth Edition

Chapter 9: Arrays and Strings

Objectives

In this chapter, you will:

Learn about arrays

Explore how to declare and manipulate data
Into arrays

Understand the meaning of “array index out
of bounds”

Become familiar with the restrictions on array
processing

Discover how to pass an array as a
narameter to a function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Objectives (continued)

* Learn about C-strings

« Examine the use of string functions to
process C-strings

« Discover how to input data into—and output
data from—a C-string

« Learn about parallel arrays

« Discover how to manipulate data in a two-
dimensional array

* Learn about multidimensional arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Data Types

« A data type Is called simple if variables of that
type can store only one value at a time

» A structured data type Is one in which each
data item iIs a collection of other data items

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 4

Arrays

« Array: a collection of a fixed number of
components wherein all of the components
have the same data type

* |n a one-dimensional array, the components
are arranged in a list form

« Syntax for declaring a one-dimensional array:

dataType arrayNamel[intExp];

intExp evaluates to a positive integer

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Arrays (continued)

« Example:

int num[5];

numo]
num[1]

numl2]

num[3]

numi4]

FIGURE 9-1 Array num

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Accessing Array Components

* General syntax:

arrayName[indexExp]

where indexExp, called an index, is any expression
whose value is a nonnegative integer

* Index value specifies the position of the
component in the array

« [] Isthe array subscripting operator
* The array index always starts at 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Accessing Array Components
(continued)

int 1list[10];

list[0]

list

=
—
e —
— —

[%]
e

list

=
—
=
—_

list

list

[=r]
e

=]
[—

(4]
—
L D e T s T e e D s e e T e D s
L]
[

L=
—_

list

list

FIGURE 9-2 Array 1list

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Accessing Array Components
(continued)

list[5] = 34;

FIGURE 9-3 Array list after execution of the statement 1ist[5]= 34;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Accessing Array Components
(continued)

list[3] = 10;
list[6] = 35;
1ist[5] = 1list[3] + list[6];

FIGURE 9-4 Array 1ist after execution of the statements 1ist[3]= 10;, list[6]= 35;, and
list[5] = 1list[3] + 1list[6];

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

10

Accessing Array Components
(continued)

You can also declare arrays as follows:

const int ARRAY SIZE = 10;
int 1ist[ARRAY SIZE];

That is, you can first declare a named constant and then use the value of the named
constant to declare an array and specify its size.

NOTE When you declare an array, its size must be known. For example, you cannot do the

following:

int arraySize; //Line 1

cout << "Enter the size of the array: "; //Line 2

cin >> arraySize; //Line 3

cout << endl; //Line 4

int list[arraySizel; //Line 5; not allowed

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 11

Processing One-Dimensional Arrays

e Some basic operations performed on a one-
dimensional array are:

— Initializing

— Inputting data

— QOutputting data stored in an array

— Finding the largest and/or smallest element

« Each operation requires ability to step through
the elements of the array

« Easily accomplished by a loop

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 12

Processing One-Dimensional Arrays
(continued)

 Consider the declaration

int 1ist[100]; //array of size 100

int 1,

* Using for loops to access array elements:
for (i = 0; i < 100; i++) //Line 1
//process list[i] //Line 2

« Example:
for (i = 0; i < 100; i++) //Line 1
cin >> list[i]; //Line 2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 13

double sales[10];
int index;
double largestSale, sum, average;

Initializing an array:

for (index = 0; index < 10; index++)
sales[index] = 0.0;

Reading data into an array:

for (index = 0; index < 10; index++)
cin >> sales[index];

Printing an array:

for (index = 0; index < 10; index++)
cout << sales[index] << " ";

Finding the sum and average of an array:

sum = 0;

for (index = 0; index < 10; index++)
sum = sum + sales[index];

average = sum / 10;

Largest element in the array:

maxIndex = 0;
for (index = 1; index < 10; index++)
if (sales[maxIndex] < sales[index])
maxIndex = index;
largestSale = sales[maxIndex];

Array Index Out of Bounds

If we have the statements:
double num[10];

int 1,
 The component num([i] isvaldifi = 0, 1, 2,
3,4, 5,0,7,8,0r9
* The Index of an array Is in bounds if the index
>=0 and the index <= ARRAY SIZE-1

— Otherwise, we say the index is out of bounds

* |n C++, there Is no guard against indices that
are out of bounds

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 15

Array Initialization During
Declaration

* Arrays can be initialized during declaration
— In this case, it Is not necessary to specify the size
of the array

» Size determined by the number of initial values in the
braces

« Example:
double sales[] = {12.25, 32.50, 16.90, 23, 45.068};

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 16

Partial Initialization of Arrays
During Declaration

* The statement:
int 1ist[10] = {0};
declares 1ist to be an array of 10 components
and initializes all of them to zero

* The statement:
int 1ist[10] = {8, 5, 12};
declares 1ist to be an array of 10 components,
Initializes 1ist[0] t0o 8, 1ist[1] to 5,
list[2] to 12 and all other components are
Initialized to 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 17

Partial Initialization of Arrays
During Declaration (continued)

* The statement:
int list|[] = {5, 6, 3};
declares 1ist to be an array of 3 components
and initializes 1ist[0] to 5, 1ist[1] to 6, and
list[2] 10 3
* The statement:
int list[25]= {4, 7};
declares an array of 25 components; initializes

list[0] to4and 1ist[1] to 7, all other
components are initialized to 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 18

Some Restrictions on Array
Processing

« Consider the following statements:

int myList[5] = {0, 4, 8, 12, 16}; //Line 1
int yourList[5]; //Line 2

« C++ does not allow aggregate operations on
an array:.
yourList = myList; //illegal

e Solution:

for (int index = 0; index < 5; index ++)
yourList[index] = myList[index];

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 19

Some Restrictions on Array
Processing (continued)

« The following is illegal too:

cin >> yourList; //illegal

o Solution:

for (int index = 0; index < 5; index ++)
cin >> yourlList[index];

* The following statements are legal, but do not
give the desired results:

cout << yourList;

if (myList <= yourList)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 20

Arrays as Parameters to Functions

* Arrays are passed by reference only

* The symbol & Is notused when declaring an
array as a formal parameter

* The size of the array Is usually omitted
— If provided, it is ignored by the compiler

Consider the following function:

void funcArrayAsParam(int listOne[], double listTwo[])
{

}

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

21

Constant Arrays as Formal
Parameters

EXAMPLE 9-6

//Function to initialize an int array to 0.
//The array to be initialized and its size are passed
//as parameters. The parameter listSize specifies the
J /number of elements to be initialized.

void initializeArray(int list[], int listSize)

{

int index;

for (index = 0; index < listSize; index++)
list[index] = 0;

/ /Function to print the elements of an int array.
//The array to be printed and the number of elements
/ /are passed as parameters. The parameter listSize
/ /specifies the number of elements to be printed.
void printArray int 1ist[], int listSize)
{

int index;

for (index = 0; index < listSize; index++)
cout << list[index] << " ";
}

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

22

Base Address of an Array and
Array In Computer Memory

* The base address of an array is the address, or
memory location of the first array component

* |If 1ist Is a one-dimensional array, its base
address Is the address of 1ist [0]

 When we pass an array as a parameter, the
base address of the actual array Is passed to
the formal parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 23

Memory
addresses

. - / Address of
1000 --——————— .
myList [0] 1000 myList [0]
. 1002
. 1003 Address of
myList [1] P 1004 --——— List [1
I 1005 myList [1]
P 1006
myList [2] B 1008 A4——— .
P 1009 myList [2]
e 1010
) 101 Address of
myList [3] B 1012 4——
I 1013 myList [3]
L 1014
) B 1015 Address of
myList[4] 0 1016 4——— List 14
1017 myList [4]
L 1018
e 1019

FIGURE 9-6 Array myList and the addresses of its components

Functions Cannot Return a VValue
of the Type Array

« C++ does not allow functions to return a
value of the type array

Integral Data Type and Array
Indices

C++ allows any integral type to be used as an
array index

Example:

enum paintType {GREEN, RED, BLUE, BROWN, WHITE, ORANGE, YELLOW};
double paintSale[7];
paintType paint;

for (paint = GREEN; paint <= YELLOW;
paint = static cast<paintType> (paint + 1))
paintSale[paint] = 0.0;

paintSale[RED] = paintSale[RED] + 75.69;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 26

Other Ways to Declare Arrays

const int NO OF STUDENTS = 20;

int testScores[NO OF STUDENTS];

const int SIZE = 50;
typedef double l1list[SIZE];

list wyourlList;
list myList;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

//Line
//Line

//Line
//Line

%

B L

27

C-Strings (Character Arrays)

« Character array: an array whose components
are of type char

« C-strings are null-terminated (' \0 ') character
arrays
« Example:
— 'A" Is the character A
- "A" Is the C-string A
« "A" represents two characters, 'A' and '\0"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 28

C-Strings (Character Arrays)
(continued)

 Consider the statement

char name[l6];

« Since C-strings are null terminated and name

has 16 components, the largest string that it
can store has 15 characters

* |f you store a string of length, say 10 In name

— The first 11 components of name are used
and the last five are left unused

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

29

C-Strings (Character Arrays)
(continued)

 The statement

char name[lo] = "John";

declares an array name of length 16 and
stores the C-string "John" In It

e The statement

char name[] = "John";

declares an array name of length 5 and stores
the C-string "John" In It

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 30

C-Strings (Character Arrays)
(continued)

TABLE 9-1 strcpy, strcmp, and strlen functions

Function Effect

Copies the string s2 into the string variable s1

strcpy(sl, s2)
The length of s1 should be at least as large as s2

Returns a value < 0 if s1 is less than s2
strcmp (sl, s2) Returns 0 if s1 and s2 are the same

Returns a value > 0 if s1 is greater than s2

Returns the length of the string s, excluding the null

strlen (s) character

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

31

String Comparison

« C-strings are compared character by
character using the collating sequence of the
system

 If we are using the ASCII character set

—"Air" <"Boat"

— "Air" < "An"

- "Bill" < "Billy"
— "Hello" < "hello"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

32

EXAMPLE 9-8

Suppose vou have the following statements:

char studentName[21];
char myname[1l6];
char yourname[l6];

The following statements show how string functions work:

Statement

strcpy (myname, "John Robinson");

strlen ("John Robinson™);

int len;
len = strlen("Sunny Day"):

strcpy (yourname, "Lisa Miller");
strcpy (studentName, yourname);
stremp ("Bill", "Lisa");

strcpy (yourname, "Kathy Brown");
strcpy (myname, "Mark G. Clark");
strcmp (myname, yourname);

Effect

Myname = "John Robinson"

Returns 13, the length of the string
"John Robinson"

Stores 9 into 1len

yourname = "Lisa Miller"
studentName ="LisaMiller"”

Returns a value < 0

yourname = "Kathy Brown"
myname = "Mark G. Clark"
Returns a value > 0

Reading and Writing Strings

* Most rules that apply to arrays apply to C-
strings as well

* Aggregate operations, such as assignment and
comparison, are not allowed on arrays

« Even the input/output of arrays Is done
component-wise

 The one place where C++ allows aggregate

operations on arrays Is the input and output of
C-strings (that is, character arrays)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 34

String Input

e cin >> name; Stores the next input C-
string Into name

* To read strings with blanks, use get:
cin.get (str, mtl);

— Stores the next m characters into str but the
newline character is not stored in str

— If the input string has fewer than m
characters, the reading stops at the newline
character

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 35

String Output

« cout << name; outputs the content of name
on the screen
— << continues to write the contents of name
until it finds the null character

- If name does not contain the null character,
then we will see strange output

« << continues to output data from memory
adjacent to name until '\0"' is found

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 36

Specifying Input/Output Files at
Execution Time

* You can let the user specify the name of the
iInput and/or output file at execution time:

ifstream infile;
ofstream outfile;

char fileName[51]; //assume that the file name is at most
/ /50 characters long

cout << "Enter the input file name: “;
cin »>> fileName;

infile.open (fileName) ; //open the input file

cout << "Enter the output file name: “;
cin >> fileName;

outfile.open(fileName); //open the output file

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 37

string Type and Input/Output
Files

« Argument to the function open must be a
null-terminated string (a C-string)

 |f we use a variable of type string to read

the name of an I/O file, the value must first be
converted to a C-string before calling open

¢ Syntax:
strVar.c str()
where strvar IS a variable of type string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 38

Parallel Arrays

* Two (or more) arrays are called parallel if
their corresponding components hold related

Information
* Example: 23456 1
int studentId[50]; 86723 B
char courseGrade[50]; 22356 C
927733 B
11892 D

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Two-Dimensional Arrays

« Two-dimensional array: collection of a fixed

number of components (of the same type)
arranged in two dimensions

- Sometimes called matrices or tables
* Declaration syntax:

dataType arrayName[intExpl][intExp2];

where intexpl and intexp?2 are expressions
yielding positive integer values, and specify the
number of rows and the number of columns,
respectively, in the array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 40

Two-Dimensional Arrays
(continued)

double sales[10][5];

FIGURE 9-8 Two-dimensional array sales

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

41

Accessing Array Components

¢ Syntax:
arrayName[indexExpl][indexExp2]

where indexexpl and indexexp?2 are
expressions yielding nonnegative integer values,
and specify the row and column position

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

42

Accessing Array Components
(continued)

sales[5][3] = 25.75;

sales

sales [5] [3]

FIGURE 9-9 sales[5][3]

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

43

Two-Dimensional Array
Initialization During Declaration

« Two-dimensional arrays can be initialized
when they are declared:

int board[4][3] = {{2, 3, 1},
{15, 25, 13},
{20, 4, T},
{11, 18, 14}};

— Elements of each row are enclosed within
braces and separated by commas

— All rows are enclosed within braces

— For number arrays, if all components of a row
aren’'t specified, unspecified ones are setto O

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 44

Two-Dimensional Arrays and
Enumeration Types

enum carType {GM, FORD, TOYOTA, BMW, NISSAN, VOLVO};
enum colorType {RED, BROWN, BLACK, WHITE, GRAY};

int inStock[NUMBER OF ROWS][NUMBER OF COLUMNS];
inStock[FORD][WHITE] = 15;

inStock [FORD] [WHITE]

inStock [RED] [EROWN] [BLACK] [WHITE] [GRAY]

- I
-
o I
-

FIGURE 9-12 inStock[FORD][WHITE]

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Processing Two-Dimensional
Arrays

« Ways to process a two-dimensional array:
— Process the entire array

— Process a particular row of the array, called
row processing

— Process a particular column of the array,
called column processing

« Each row and each column of a two-
dimensional array Is a one-dimensional array

— To process, use algorithms similar to
processing one-dimensional arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 46

Processing Two-Dimensional
Arrays (continued)

const int NUMBER OF ROWS = 7; //This can be set to any number.
const int NUMBER OF COLUMNS = 6; //This can be set to any number.

int matrix[NUMBER OF ROWS][NUMBER OF COLUMNS];
int row; - -

int col;

int sum;

int largest;

int temp;

matrix [0] [1] [21 [3] [4] [5]

FIGURE 9-13 Two-dimensional array matrix

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

47

Initialization

To initialize row number 4 (i.e., fifth row) to O

row = 4;
for (col = 0; col < NUMBER OF COLUMNS; col++)
matrix[row][col] = 0;

To Initialize the entire matrix to O:

for (row = 0; row < NUMBER OF ROWS; row++)
for (col = 0; col < NUMBER OF COLUMNS; col++)
matrix[row][cel] = 0;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 48

Print

* To output the components of matrix:

for (row = 0; row < NUMBER OF ROWS; row++)

{
for (col = 0; col < NUMBER OF COLUMNS; col++)
cout << setw(5) << matrix[row][col] << " ";

cout << endl;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 49

Input

To input data into each component of
matrilx:

for (row = 0; row < NUMBER OF ROWS; row++)
for (col = 0; col < NUMBER OF COLUMNS; col++)
cin >> matrix[row][col];

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 50

Sum by Row

 To find the sum of row number 4 of matrix:

sum = 0;

row = 4;

for (col = 0; col < NUMBER OF COLUMNS; col++)
sum = sum + matrix[row][col];

 To find the sum of each individual row:

J//8um of each individual row
for (row = 0; row < NUMBER OF ROWS; row++)

{

sum = 0;
for (col = 0; col < NUMBER OF COLUMNS; col++)
sum = sum + matrix[row][col];

cout << "Sum of row " << row + 1 << " = " £« sum << endl;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 51

Sum by Column

 To find the sum of each individual column:

J/Sum of each individual column
for (col = 0; col < NUMBER OF COLUMNS; col++)

{
sum = 0;
for (row = 0; row < NUMBER OF ROWS; row++)
sum = sum + matrlx[rcw][cal],

cout << "Sum of column "™ << col + 1 << " = " << sum
<< endl;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 52

Each Column

Largest Element in Each Row and

//Largest element in each row
for (row = 0; row < NUMBER OF ROWS; row++)
{
largest = matrix[row][0]; //Assume that the first element
//of the row is the largest,
for (col = 1; col < NUMBER OF COLUMNS; col++)
if (largest < matrix[row][col])
largest = matrix[row][col];

cout << "The largest element in row " << row + 1 << " ="
<< largest << endl;

//Largest element in each column
for (col = 0; col < NUMBER OF COLUMNS; col++)
{

largest = matrix[0][col]l; //Assume that the first element
//of the column is the largest.
for (row = 1; row < NUMBER OF ROWS; row++)
if (largest < matrix[row][col])
largest = matrix[row][col];

cout << "The largest element in column " << col + 1
<< " = " << largest << endl;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

53

Reversing Diagonal

 Before:

matrix [0] [1] [2] [3]

FIGURE 9-14 Two-dimensional array matrix

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Reversing Diagonal (continued)

* To reverse both the diagonals:

//Reverse the main diagonal

for (row = 0; row < NUMBER OF ROWS / 2; rowt+)
{

temp = matrix[row][row];

matrix[row][row] =

matrix[NUMBER OF ROWS - 1 - row][NUMBER OF ROWS - 1 - row];
matrix[NUMBER OF ROWS - 1 - row][NUMBER OF ROWS - 1 - row]
= temp;

//Reverse the opposite diagonal
for (row = 0; row < NUMBER OF ROWS / 2; row++)
{
temp = matrix[row][NUMBER OF ROWS - 1 - row];
matrix[row] [NUMBER OF ROWS - 1 - row]
matrlx[NUMEER OF ROWS 1 - row][row];
matrix[NUMBER OF ROWS - 1 - row][row] = temp;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 55

Reversing Diagonal (continued)

o After:

matrix [0] [1] [2] [3]

FIGURE 9-15 The array matrix after reversing diagonals

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Passing Two-Dimensional Arrays as
Parameters to Functions

« Two-dimensional arrays can be passed as
parameters to a function

— Pass by reference
« Base address (address of first component of the
actual parameter) is passed to formal parameter
* Two-dimensional arrays are stored in row
order

 When declaring a two-dimensional array as a
formal parameter, can omit size of first
dimension, but not the second

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 57

Arrays of Strings

« Strings in C++ can be manipulated using

either the data type string or character arrays
(C-strings)

* On some compilers, the data type string

may not be available in Standard C++ (i.e.,
non-ANSI/ISO Standard C++)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

58

Arrays of Strings and the string
Type

* To declare an array of 100 components of
type string:
string 1li1st[100];
« Basic operations, such as assignment,

comparison, and input/output, can be
performed on values of the string type

« The data in 1ist can be processed just like
any one-dimensional array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 59

Arrays of Strings and C-Strings
(Character Arrays)

char 1ist[100][1l6];
strepy(list[1l], "Snow White");

list

gof | [| [[

el | | [L

listi40] HIHENENEEEEEEEEEN
isti1] [i NN

listiss] NN NEEEEEEEEEEN
listioo] I NN NEEREEEREEEERER

FIGURE 9-17 Array 1list, showing 1list[1]

for (3 = 0; J < 100; j++)
cin.get (list[j]1, 16);

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Another Way to Declare a Two-
Dimensional Array

« Consider the following:

const int NUMBER OF ROWS = 20;
const int NUMBER OF COLUMNS = 10;

typedef int tableType[NUMBER OF ROWS][NUMBER OF COLUMNS];

* To declare an array of 20 rows and 10
columns:

tableType matrix;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 61

Multidimensional Arrays

« Multidimensional array: collection of a fixed
number of elements (called components)
arranged in ndimensions (n >=1)

— Also called an n-dimensional array
« Declaration syntax:

dataType arrayName[intExpl][intExp2] ... [intExpn];

 To access a component:

arrayName[indexExpl][indexExp2] ... [i1ndexExpn]

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 62

Multidimensional Arrays (continued)

* When declaring a multidimensional array as a
formal parameter in a function

— Can omit size of first dimension but not other
dimensions

« As parameters, multidimensional arrays are
passed by reference only

A function cannot return a value of the type
array

* There is no check if the array indices are within
bounds

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 63

Programming Example: Code
Detection

 When a message is transmitted in secret code
over a transmission channel, it is usually
transmitted as a sequence of bits (0s and 1s)

« Due to noise In the transmission channel, the
transmitted message may become corrupted

— Message received at destination is not the
same as the message transmitted

— Some of the bits may have been changed

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 64

Programming Example: Code
Detection (continued)

« Several techniques to check the validity of the
transmitted message at the destination

* One technique Is to transmit the same
message twice

— At the destination, both copies of the message
are compared bit by bit

— If the corresponding bits are the same, the
message received is error-free

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 65

Programming Example: Code
Detection (continued)

« We write a program to check if the message
received at the destination is error-free
* For simplicity, assume that:

— The secret code representing the message is
a sequence of digits (0 to 9)

— The maximum length of the message is 250
digits
* The first number in the message is the length
of the message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 66

Programming Example: Code
Detection (continued)

If the secret code is
7 92 78 35 6

then the message Is seven digits long

The above message Is transmitted (twice) as
79278356792 78356

Input: a file containing the secret code and its

copy

Output: the secret code, its copy, and a
message If the received code Is error-free

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 67

Programming Example: Code
Detection (continued)

* The results are output in the following form:

Code Digit Code Digit Copy
9 9
2 2
]]
8 8
3 3
5 5
6 6

« Message transmitted OK

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Programming Example: Problem
Analysis

* Because we have to compare digits of the
secret code and its copy:

— First, read the secret code and store it in an
array

— Next, read first digit of the copy and compare it
with the first digit of the code, and so on

— If any corresponding digits are not the same,
print a message next to the digits

* The first number in the secret code, and Iin
the copy, indicates the length of the code

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 69

Programming Example: Algorithm
Design

* Open the input and output files

* If the input file does not exist, exit the
program

« Read the length of the secret code

* If the length of the secret code Is greater than
250, terminate the program because the
maximum length of the code In this program
IS 250

 Read and store the secret code into an array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 70

Programming Example: Algorithm
Design (continued)

* Read the length of the copy

* If the length of the secret code and its copy
are the same, compare the codes; otherwise,
print an error message

* Note: To simplify function main, write a
function, readCode, to read the secret code
and another function, compareCode, to

compare the codes

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

71

Programming Example:
readCode

First, read length of secret code

If length of secret code Is greater than 250

— Set 1enCodeOk (a reference parameter) to
false and the function terminates

* Value of 1enCodeOk Is passed to calling
function to indicate If secret code was read
successfully

 If length of code is less than 250, readCode

reads and stores secret code into an array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

72

Programming Example:
readCode (continued)

void readCode(ifstreamé& infile, int list[], inté& length,
bool& lenCodeOk)
{
int count;

lenCodeOk = true;

infile >> length; //get the length of the secret code

if (length > MAK_CDDE_SIZEJ
{
lenCodeQk = false;
return;

//Get the secret code.
for (count = 0; count < length; count++)
infile >> list[count]:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Programming Example:
compareCode

e Setabool variable codeOk to true

* If length of code and copy are not equal

— Qutput error message and terminate function
* For each digit in input file

— Read the next digit of secret code copy

— Output digits from code and copy

— If corresponding digits are not equal, output
error message and set codeOk to false

* |If codeOk, output message indicating code
transmitted OK, else output an error message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 74

Programming Example:
compareCode (continued)

void compareCcde(ifstream& infile, ofstream& outfile,
int list[], int length)
{
//Step a
int length2;
int digit;
bool codelk;
int count;

codeDk = true; //Step b
infile >> length2; //Step c
if (length != length2) //Step d

{
cout << "The original code and its copy "
<< "are not of the same length."
<< endl;
return;

}

outfile << "Code Digit Code Digit Copy"
<< endl;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

75

Programming Example:
compareCode (continued)

codeQk = false;
}

else
outfile << endl;
}

if (codeOk) //Step £
outfile << "Message transmitted OK."
<< endl;

else
outfile << "Error in transmission. "
<< "Retransmit!!"™ << endl;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

for (count = 0; count < length; count++) //Step e
{
infile >> digit; //Step e.1
outfile << setw(5) << list[count]
<< setw(l7) << digit; //Step e.2
if (digit != list[count]) //Step e.3
{
outfile << " code digits are not the same"
<< endl;

76

Programming Example: Main
Algorithm

* Declare variables
* Open the files
 Call readCode to read the secret code
* If (length of the secret code <= 250)
— Call compareCode to compare the codes

else
— Output an appropriate error message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

77

Summary

 Array: structured data type with a fixed
number of components of the same type

— Components are accessed using their relative
positions In the array
« Elements of a one-dimensional array are
arranged in the form of a list
* An array index can be any expression that
evaluates to a nonnegative integer
— Must always be less than the size of the array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

78

Summary (continued)

* The base address of an array is the address
of the first array component

 When passing an array as an actual
parameter, you use only its name

— Passed by reference only

A function cannot return a value of the type
array

* In C++, C-strings are null terminated and are
stored in character arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 79

Summary (continued)

« Commonly used C-string manipulation
functions include:
- strcpy, strcmp, and strlen

« Parallel arrays are used to hold related
Information

* |n a two-dimensional array, the elements are
arranged in a table form

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

80

Summary

e To access an element of a two-dimensional
array, you need a pair of indices:

— One for the row position
— One for the column position

* In row processing, a two-dimensional array Is
processed one row at a time

* |n column processing, a two-dimensional
array Is processed one column at a time

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 81

